Some new existence results for fractional partial random nonlocal differential equations with delay
نویسندگان
چکیده
Abstract The present paper deals with some existence results for the Darboux problem of partial fractional random differential equations finite delay. arguments are based on a fixed point theorem stochastic domain combined measure noncompactness. An illustration is given to show applicability our results.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملExistence results for hybrid fractional differential equations with Hilfer fractional derivative
This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.
متن کاملSome New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari's inequality. A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.
متن کاملSome existence results on nonlinear fractional differential equations.
In this paper, by using fixed-point methods, we study the existence and uniqueness of a solution for the nonlinear fractional differential equation boundary-value problem D(α)u(t)=f(t,u(t)) with a Riemann-Liouville fractional derivative via the different boundary-value problems u(0)=u(T), and the three-point boundary condition u(0)=β(1)u(η) and u(T)=β(2)u(η), where T>0, t∈I=[0,T], 0<α<1, 0<η<T,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Universitatis Paedagogicae Cracoviensis
سال: 2023
ISSN: ['2080-9751', '2450-341X']
DOI: https://doi.org/10.2478/aupcsm-2023-0011